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Skill dependencies uncover nested human 
capital
 

Moh Hosseinioun    1,2, Frank Neffke    3, Letian Zhang4 & Hyejin Youn    1,2,5,6 

Modern economies require increasingly diverse and specialized skills, many 
of which depend on the acquisition of other skills first. Here we analyse 
US survey data to reveal a nested structure within skill portfolios, where 
the direction of dependency is inferred from asymmetrical conditional 
probabilities—occupations require one skill conditional on another. This 
directional nature suggests that advanced, specific skills and knowledge 
are often built upon broader, fundamental ones. We examine 70 million job 
transitions to show that human capital development and career progression 
follow this structured pathway in which skills more aligned with the nested 
structure command higher wage premiums, require longer education and 
are less likely to be automated. These disparities are evident across genders 
and racial/ethnic groups, explaining long-term wage penalties. Finally, we 
find that this nested structure has become even more pronounced over the 
past two decades, indicating increased barriers to upward job mobility.

Modern economies demand a broad spectrum of specialized skills and 
knowledge1–4. As these economies grow more complex, the assessment 
of human capital has evolved from traditional metrics of educational 
attainment—such as years of schooling or degrees—to a detailed analysis 
of the specific attributes workers need, including social, cognitive and 
technical skills5–15. In addition, recent research indicates that the value 
of these skills often emerges from their combinations and interactions, 
especially when they are synergistic16–18. This insight has led to a new 
way of conceptualizing human capital, viewed as a network of intercon-
nected skills rather than simply a collection of individual abilities3,16,18–26.

Building on this framework, we explore an important yet often 
overlooked aspect of how skills relate to one another: their depend-
encies. Just as mastering calculus requires a prior understanding of 
algebra and geometry, education and career paths are both cumula-
tive and sequential, with each step building upon the previous one. 
This dependency structure adds depth to the complementary nature 
of skills. Workers acquire and develop skills not only because they 
complement each other but also because they are learned in a specific 
sequence through educational and professional experiences27,28. These 
dependencies are fundamental to the structure of human capital, 
shaping career paths in ways that go beyond the simple combination 
of individual abilities.

Such a perspective leads us to our central research question: what 
do these skill interdependencies look like, and what broader implica-
tions do they hold? One might naturally expect a hierarchically nested 
structure where specific roles branch off from a central foundation, 
as in the way specialization typically progresses from a few broader, 
general contexts to more specific areas. That said, we also expect that 
not every skill will fit neatly within such a nested structure; some may 
depend on others, while some may stand alone. This variation suggests 
that certain skill dependencies, especially those requiring extensive 
education or training, may be more deeply nested than others within 
the overall hierarchy. If this is the case, we ask: how might these varying 
structural properties provide new insights into economic structures, 
including differential wage premiums and persistent wage disparities 
observed across different demographic groups?

To explore these questions, we analyse skill portfolios using 
occupational surveys and resumes to construct the hierarchical skill 
dependencies that make up human capital29. Our findings reveal that 
these dependencies not only align with familiar dichotomies in job 
categories—such as blue collar versus white collar; low skill versus high 
skill and physical roles versus cognitive roles—but also enable us to 
systematically parameterize these categories using consistent criteria. 
In this way, we raise deeper inquiry into the origins of these discrete 
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In this study, we quantify, analyse and classify the generality of skills on 
the basis of their breadth of application across occupations by analysing 
publicly available survey data from the US Bureau of Labor Statistics 
(BLS). These surveys provide detailed observations on job require-
ments for nearly a thousand occupations, including the importance and 
required level of each skill, knowledge or ability necessary for workers 
to perform their tasks. Each is numerically rated: skill’s importance is 
rated on a scale from 1 to 5 to indicate ‘not important’ to extremely 
important, while the required level ranges from 0 to 7, indicating the low 
to high level of expertise needed for a given occupation. For instance, 
while speaking is essential for both lawyers and paralegals, lawyers 
who argue in court require a higher level of proficiency than paralegals, 
who need only an average level29. We chose skill level as our primary 
indicator of skill demand—measuring how many occupations require 
each skill at varying levels of proficiency—because advanced skills typi-
cally develop through specialized training and education rather than 
being immediately applied, and thus, it better captures the sequential 
nature of skill acquisition and development. Nevertheless, these two 
measures are empirically correlated50, and our results remain robust 
even when considering skill importance.

Figure 1a–c shows the average skill level demand, from which we 
infer skill generality by their distribution profiles. Some distributions 
are skewed (blue on the left panel), while others are more centred (red 
on the right panel). Based on these shapes, we group skills into three 
categories—specific, intermediate and general—and arrange them 
along a specificity gradient, represented by the arrow at the top. The 
insets offer examples of these categories to aid our understanding. 
Specific skills (for example, dynamic flexibility and programming) 
are characterized as skewed demand distributions that peak near zero 
with a long tail. This skewed distribution shape indicates that most jobs 
require little or no proficiency in these skills, with only a few special-
ized roles requiring higher levels at the distribution tail. Meanwhile, 
general skills (for example, English language and oral expression) are 
needed at elevated levels (3–4) across a wide range of jobs owing to 
their broad applicability.

These demand distributions lay the groundwork for empiri-
cal definitions of skill generality, independent of their broader 
socio-economic contexts. General skills are those required by the 
majority of jobs at proficiency level 3 or higher, while specific skills 
are needed at this level in only a limited number of specialized roles, 
as most jobs need almost no proficiency. In line with this approach, 
we introduce two additional measures of skill generality—median skill 
levels across occupations and later-defined network-based metrics. 
All three approaches demonstrate strong consistency. Median skill 
levels group skills into three categories: general skills (median level 
3.34), intermediate skills (2.37) and specific skills (0.87). In the fol-
lowing section, we introduce network-based measures such as local 
reaching centrality and nestedness contributions for generality and 
dependencies, respectively51,52.

We streamline our analysis by consistently colour-coding skills 
according to their generality: general (red), intermediate (grey) and 
specific (blue). Supplementary Table 1 provides the full list of skills—31 
general, 43 intermediate and 46 specific, accompanied by various 
grouping methods. Our findings remain robust across various group 
sizes, clustering methods and unit choices (Supplementary Section 1).

Skill dependencies
The uneven distributions of skill demand that we observe create the 
conditions for a second-order structure beyond individual job require-
ments: a nested skill–occupation hierarchy. In this structure, jobs 
requiring specific skills are often subsets of those that demand general 
skills, indicating that specific skills tend to complement general ones 
rather than stand alone, while general skills remain largely independ-
ent. These asymmetric co-occurrences suggest that the demand for 
specific skills often depends on the presence of general skills, but not 

categories that are often taken for granted in human capital. Further-
more, by incorporating the hierarchical structure of skill dependencies, 
we integrate one of the core concepts of traditional human capital 
theory—human capital specificity—into the network-based complexity 
approach to understanding workforce capabilities and development.

We begin our analysis by differentiating between specific skills, 
which are required by only a few specific occupations, and general 
skills, which are applicable across a wide range of occupations (Fig. 1). 
Since the inception of human capital theory, the distinction between 
them has been one of its hallmarks, explaining why market economies 
typically underinvest in general skills30, why acquiring specific skills 
creates hold-up problems31 and why workers often face earning losses 
when they are displaced from their jobs32. In this study, the distinction 
matters for another reason: general skills serve as a foundational layer 
of an individual’s human capital, upon which more specific skills build, 
thereby illustrating their nested dependencies within human capital.

Next, we identify and quantify these dependencies between pairs of 
skills by calculating the conditional probabilities that a skill is required 
for an occupation, given that another skill is also required for the same 
occupation (Fig. 2)33. Consistent with our common understanding 
of educational and occupational learning, the skill dependencies 
manifested in job requirements indeed follow a hierarchically nested 
structure such that specialized expertise is embedded within broader, 
general skill layers27. Within this framework, we further distinguish 
between skills that align with this overall nested structure and those 
that deviate from it. Our analysis indicates that skills that align with 
this overall structure are associated with longer education, higher 
wage premiums and a reduced risk of displacement by automation 
(Fig. 3)9,34,35. This dependency structure provides an alternative expla-
nation of why cognitive and technical skills—primarily those deeply 
embedded within our nested dependencies—along with managerial and 
social skills (classified here as general skills) tend to command higher 
returns in the labour market.

Lastly, we examine how the nestedness of skill requirements in 
jobs recapitulates the course of individual workers’ careers36. Our 
longitudinal analysis using three datasets—median occupational ages, 
synthetic birth cohorts of individuals, and millions of job transitions in 
resumes—reinforces our initial findings (Fig. 4). First, wage premiums 
are strongly tied to high proficiency in specialized skills that individu-
als increasingly acquire and apply as they advance in their careers. But, 
here is the catch: advancing these high-wage specialized skills none-
theless relies heavily on a strong foundation in general, prerequisite 
skills (Fig. 5). Specializations that lack these nested dependencies face 
disadvantages over time, echoing the cumulative and sequential nature 
of human capital (Supplementary Fig. 31).

By identifying, quantifying and classifying the nested struc-
ture of human capital, our analysis provides a comprehensive and 
dynamic view of workforce skills to offer new insights into career 
trajectories, wage dynamics and persistent earnings disparities. The 
nested architecture, for example, provides a structural perspective on 
long-standing occupational disparities across racial, ethnic and gender 
lines (Fig. 6). As detailed data on skills, knowledge and tasks become 
more available3,19,24, this approach serves as a useful tool for under-
standing labour market shifts. With the emergence of new skills and 
the obsolescence of older ones with new technologies37–39, it becomes 
even more valuable for systematically assessing the evolving skill land-
scape and its implications for career development and socio-economic 
inequalities. Notably, we find that these nested dependencies have 
grown more pronounced in the past decade, potentially raising new 
barriers to upward mobility (Fig. 7).

Results
Skill generality
The distinction between general and specialized skills is widely acknowl-
edged but rarely empirically quantified in human capital theory40–49.  
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necessarily the reverse. This nested skill–occupation hierarchy, mani-
fested in job co-requirements, reveals a hierarchy of skill dependencies 
that shape career trajectories.

Most jobs require a proficiency level of at least 2 in general skills 
covering a broad range of roles, including entry-level positions. As a 
result, workers typically begin their careers in roles that rely on broadly 
applicable abilities before transitioning directly into more special-
ized positions. In these transitions, certain skills—most often general 
ones—serve as prerequisites for more specialized roles. For example, 
a software engineer may need advanced programming skills (specific) 
in addition to written comprehension and problem-solving and com-
munication skills (general), whereas a customer service representative 
who relies on communication and problem-solving skills (general) 
does not necessarily need programming skills (specific). These skill 
hierarchies are evident in job co-requirements.

Therefore, we calculate conditional probabilities between dif-
ferent skills in occupation requirements: how often occupations that 
require one skill also demand another. As previously discussed, the 
relationship is not necessarily reciprocal. If one skill is a prerequisite 
for another—similar to how foundational courses precede advanced 
ones in educational curricula—it is more likely that an occupation will 

require the prerequisite given that the advanced skill is needed than 
vice versa. This asymmetric conditional probability suggests a direc-
tional dependency between the two. We operationalize our methods 
by comparing p(skillA∣skillB), the conditional probability of requiring 
skillA given the presence of another skillB, with the reverse condition, 
p(skillB∣skillA). Only when p(skillA∣skillB) >> p(skillB∣skillA) do we assign 
a hierarchical direction from skillA to skillB as a substantive conditional 
direction to indicate that application or acquisition of skill B is more 
likely to be contingent on skill A (ref. 33).

Figure 1d illustrates our inference method with a few examples. For 
instance, the conditional probability of requiring math skills (whose 
distribution peaks at 2.5), given the need for programming skills (which 
skews towards zero, indicating that only few jobs require programming 
at this level), is greater than the reverse, that is, p(skillmath∣skillprog) >> p
(skillprog∣skillmath). Accordingly, we assign a direction math → program-
ming. Note that not all specific skills necessarily depend on general 
ones. In some cases, such as the pair between dynamic flexibility and 
math skills in Fig. 1d, skills may appear independently and yet still 
co-occur by random chance. We apply a z-score threshold to remove 
the random noise and retain only meaningful skill dependencies in 
Fig. 2 (Methods and Supplementary Section 3).
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Fig. 1 | Skill level demand distributions and dependencies. a–c, The number of 
occupations requiring given skill levels within each of the three skill groups 
(Supplementary Section 1): specific (a), intermediate (b) and general (c). The box 
plots display the data range, with the boxes representing the interquartile range, 
the central line indicating the median and the whiskers extending to the 
minimum and maximum data points within the interquartile range. Skills are 
categorized on the basis of the characteristic shapes of their level distribution 
across occupations, exemplified by the insets. These categories are labelled as 
general (31 skills), intermediate (43 skills) and specific (46 skills), with an arrow at 
the top indicating increasing specificity from right to left. The skewed 
distribution shapes (blue on the left) peak at zero; that is, most occupations 
require little or no proficiency in these skills, and only a few require advanced 

levels. As we move general skills (red on the right), the distribution shifts towards 
the higher levels, indicating that a wide range of jobs require high proficiency in 
those skills. d, A schematic illustrating our inference method for dependency 
between skill pairs using the asymmetric conditional probability in job 
requirements—one skill being required given that another is. For example, if 
math skill is more likely needed given the presence of programming in 
occupations (compared with the reverse), p(skillmath∣skillprogram) >> p(skillprogram∣ski
llmath), we infer a directional dependency: math → programming, weighted by the 
level of asymmetry. Similarly, oral expression → negotiation, but 
math ↛  dynamic flexibility, as rare and independent events are filtered out 
(Methods).
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Figure 2a,b show the resulting dependency network in its back-
bone and the full connections, respectively (see Supplementary Figs. 15 
and 16 for labels). Nodes are coloured by generality group as in Fig. 1 
and positioned on the basis of educational requirements (x axis) and 
the local reaching centrality (y axis), which indicates the number of 
other skills reachable from the focal skill51 (Methods). Reaching central-
ity in this network quantifies the volume of dependent nodes (skills) 
connected to the focal skill and, thus, can indicate its hierarchy order 
(skill generality). Indeed, we find reaching centrality strongly correlates 
with the skill’s median level measure (ρ ≈ 0.71).

Overall, the hierarchical structure in Fig. 2a aligns with our common 
understanding of specialization. For instance, to develop programming 
skills (blue node at the bottom), one must first have a general knowledge 
of math and systems analysis (grey in the middle), which themselves rely 
on deductive/inductive reasoning (red at the top). Similarly, negotiation 
skills (grey in the middle) are contingent on systems analysis (grey in the 
middle) and oral expression (red at the top). These relations constitute 
the nested dependency chains running from top to bottom in the hierar-
chy direction in Fig. 2. In the following sections, we will provide a more 
technical definition of the nested structure, originally developed in 
ecology52–54, and explore the implications of these nested dependency 
chains for wage premiums, career trajectories and skill entrapment.

It is possible that the inferred directionality does not fully account 
for the underlying microprocesses and mechanisms driving skill acqui-
sition. These dependencies may arise not only from the natural progres-
sion of individuals’ learning, but also from skill requirements imposed 
by firms as employees advance in job seniority. Separating these factors 
would require further microlevel analyses or field studies. However, 
our additional analysis suggests that job seniority alone does not 
explain our findings. To test this, we excluded skills and jobs typically 
associated with seniority, such as social and management skills, as well 
as occupations with management titles, and found that our results 
remained robust even with these exclusions (Supplementary Section 
9.1). Therefore, the observed nested structure in career trajectories is 
probably driven by broader acquisition dependencies. This reasoning 
is especially so in today’s complex economy. With its diverse range of 
specialized skill demands, individuals would not pursue advanced 
skills—often requiring non-zero effort—unless those skills were neces-
sary. Thus, the inferred directionality from the nested structure reflects 
acquisition dependencies that shape career development.

Our detailed analysis further supports the manifestation of acqui-
sition dependency in individual career progression. First, we examine 
the career paths of registered nurses who transitioned to nurse prac-
titioners and find that skill and wage differences in their resume data 

edc Programming Negotiation Repairing

Arrival probability
0 0.5 1.0

Programming

Science

Dynamic flexibilityRepairingPhysicsFine arts

Math skills

Systems analysis
Negotiation

Originality

Using computers

Oral expression
English language

Deductive
reasoning

Social
perceptiveness

Mechanical

Engineering

a

H
ig

h
Lo

w
Lo

ca
l r

ea
ch

in
g 

ce
nt

ra
lit

y

High LowEducation

General

Low

High

Specific

Intermediate

b

Selective attention

Education

Skill group

Fig. 2 | Skill dependency hierarchy. a,b, The hierarchy is constructed from 
aggregating weighted directed dependencies for all skill pairs in its backbone 
connections (a) and its full connections (b). Node sizes are proportional 
to education levels and coloured according to the skill generality groups, 
and embedded in its educational attainment (x axis) and local reaching 

centrality (y axis)51. c–e, Reachability (that is, arrival probability) from each 
skill to programming (c), negotiation (d) and repairing (e) (highlighted)58. 
Dark hues indicate a higher likelihood of arriving at the focal skill (Methods). 
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align with nested dependency chains in the human capital structure 
(Supplementary Sections 3.4). Furthermore, our analysis of the career 
trajectories of Hispanic immigrants shows that limited proficiency in 
certain general skills (for example, English language) limits the devel-
opment of dependent specialized skills, resulting in demographic skill 
entrapment (Supplementary Section 3.5). Lastly, we analyse sequential 
datasets, including occupational ages, survey participants’ ages and 
job sequences in resumes, to further support our findings in the next 
section.

Skills’ structural alignment with nested architecture
We now quantify the degree to which the overarching skill–occupa-
tion structure is nested and how individual skills align with this nested 
architecture. We first use nestedness (N), originally developed in ecol-
ogy, to quantify to what extent specialists preferentially engage with 
generalists, which we translate into interactions between specific and 
general skills52–57. Basically, N measures how often specific skills are 
demanded in occupations that also require general counterparts more 
than by random chance. There are a number of different definitions 
of N, such as the overlap index (Nc), checkerboard score, temperature 
and nestedness metric based on overlap and decreasing fill (NODF), 
and we test them to ensure the robustness of our analysis in Supple-
mentary Section 2.

We then assess each skill’s alignment with the observed nestedness 
by its contribution score (cs). The contribution score (cs) for each skill 
s is calculated as (N − ⟨N∗

s ⟩)/σN∗s (ref. 52), where ⟨N∗
s ⟩ and σN∗s  are the aver-

age and standard deviation of nestedness across an ensemble of ran-
dom counterparts, respectively. For each skill s, we generated 5,000 

counterparts ({N*}) in which its dependencies are randomized (that is, 
skills are randomly distributed across occupations as if there were no 
conditional probability structure) while its generality (demand distri-
bution shape) remains constant (Methods).

Therefore, the contribution score (cs) serves to differentiate skills 
that align or misalign with the observed nested dependency structure. 
A positive cs indicates that the dependencies of skill s are aligned with 
and, thus, positively reinforce the overall nested hierarchy. Conversely, 
a negative cs suggests that the skill’s dependencies are misaligned, 
diminishing the nested structure (N). For example, skills such as nego-
tiation, programming and fine arts are embedded in strongly interde-
pendent branches of the hierarchy in Fig. 2 (represented by blue and 
grey nodes on the left), which explains their positive contribution 
scores (cs > 0) in Fig. 3. Meanwhile, skills such as mechanical, repairing 
and dynamic flexibility appear in loosely dependent branches (blue 
nodes on the right), and thus their dependency structure diminishes 
the overall nestedness (cs < 0). In this way, cs quantifies how much a 
skill’s dependencies reinforce or diminish the overall hierarchical 
structure.

Figure 3 and Supplementary Fig. 10 show how the structural attrib-
ute cs correlates with key socio-economic attributes such as generality, 
education, wages and even automation risk. First, general and foun-
dational skills strongly align with the hierarchical structure of human 
capital in Fig. 3a. Second, the greater a skill’s alignment with this nested 
structure (that is, the higher the cs), the higher the required education 
level and expected wages in Fig. 3c,d and Supplementary Fig. 10. To 
illustrate the implications for career development and reskilling, we 
present skills’ arrival probabilities in Fig. 2c,d (ref. 58). For repairing 
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(cs < 0), there are fewer nodes that reach it through nested dependent 
pathways, compared with skills such as programming and negotia-
tion, which have positive cs. With significant implications for wages 
and education, these nested pathways, therefore, may contribute to 
disparities in demographics and opportunities59.

Our analysis underscores the importance of considering both 
skill generality and its structural alignment with the nested hierarchy 
of human capital (cs) when assessing socio-economic implications. 
As previously discussed, career paths often begin with jobs requir-
ing general skills and transition into more specialized roles that 
demand additional specific skills. These specialized skills can be 
divided into two categories: nested-specific skills (cs > 0) that align 
with the nested hierarchy and typically require higher education 
with greater economic rewards, and un-nested-specific skills (cs < 0), 

which fall outside the structure and tend to miss out on increasing 
economic benefits as careers progress. To streamline our analysis, 
we have categorized skills accordingly. In the next section, we will 
explore how nested skills unfold along career trajectories and how 
they interact with factors such as occupational age, wage premiums 
and skill entrapment.

Skill categories in career trajectories
We analyse three datasets of occupational sequences to examine how 
skill levels evolve across various categories: occupation sequences by 
their median ages, by following synthesized birth cohorts from indi-
vidual surveys, and by job transitions in resumes. Each dataset offers 
unique strengths and limitations, which, when combined, provide 
a coherent picture of both nested and unnested career trajectories.
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(occ.) (with 95% CI), segmented by the median ages of employees (nocc = 542). 
Levels of general and nested skills rise with an occupation’s median age, while 
unnested skills show no notable correlations with median age groups.  
d–f, Average general (d), nested (e) and un-nested (f) skill levels (with 95% 
CI) against age in synthetic birth cohorts (nsurvey = 1,493,142). The insets 
isolate cohorts born in 1967, while the main figures average across all cohorts 
(1980–2022). Notably, general and nested skills rise markedly while unnested 

skills decline until around age 30, at which point gender gaps become more 
pronounced. g,h, Average general (g) and nested and un-nested (h) skill levels 
(with 95% CI) over job sequences in resumes (nmoves = 12,561,319), which favour 
more nested job roles, and thus general and nested skill levels are elevated.  
i, Changes in skill levels between ith job transitions in observed resumes (circles) 
and bootstrapped resumes with randomized job sequences (grey triangles). 
Skill profiles stabilize within the initial five jobs. The 95% CI is not immediately 
discernible due to the large sample size.
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We begin our analysis with the median ages of occupations, assum-
ing that skill progression and development are closely correlated with 
the median age of workers in those occupation groups28,60,61. Figure 4a–c  
shows the proficiency levels of general, nested and unnested skills 
across occupations, segmented and arranged by the median age of 
workers in those roles (Methods). Consistent with previous findings, 
the data indicate that skill demand shifts towards nested skills as 
individuals advance in their careers: occupations with older workers 
(median age over 30 years) tend to require higher levels of both gen-
eral and nested skills compared with those with younger workers. It 
also suggests that, as workers age and progress in their careers, these 
skills become increasingly essential to meet job demands. Meanwhile, 
the demand for unnested skills remains relatively stable across all age 
groups, indicating that their necessity is not influenced by worker age.

Our results hold when examining career trajectories constructed 
from synthetic birth cohorts of full-time respondents aged 17–55 years 
in the Current Population Survey (CPS) (Fig. 4d–f). Because the CPS 
provides yearly cross-sectional data rather than long-term longitudinal 
tracking, we connected birth cohorts across surveys to emulate career 
trajectories. For example, we created a 1967 cohort for the insets and 
repeated this process for all birth cohorts in the surveys between 1980 
and 2022 (Methods)10,11. These results are consistent with our earlier 
findings with a more detailed pattern. Age 30 emerged as a marked 
turning point. Up to this age, there is a sharp increase in both general 
and nested skill levels, while unnested skills show a moderate decline. 
After age 30, the overall changes in skill levels tend to stabilize.

The second dataset includes additional demographic informa-
tion about the respondents, allowing us to decompose our findings 
by gender and, later, by race. For example, analysing skill trends by 

gender reveals a gap in specializations that emerges around age 30, 
as shown in Fig. 4d–f. While men continue to grow their general and 
nested skills until their 50s, for women, the growth in these skills pla-
teaus in their early 30s, which coincides with the typical age range 
for first-time mothers in the USA. We further analyse the influence of 
parenthood on male and female workers with and without children, 
as well as working schedules and hours in Supplementary Sections 
7.1 and 7.2. Our findings are robust to controlling for yearly economic 
conditions (Supplementary Fig. 28) and educational attainment (Sup-
plementary Figs. 29 and 30).

Lastly, we analyse over 70 million individual job transitions 
recorded in 20 million resumes. Figure 4g,h shows that the results of 
these direct observations are again consistent with our two earlier 
findings. The baselines for general and nested skill levels are shifted 
because the resume dataset favours more nested job roles. Once again, 
career trajectories (the ith job transition) show a steady accumulation 
of both general and nested skills (Δi > 0) during the first five transitions. 
In addition, Fig. 4i indicates that general skills advance faster than 
nested skills early in a career (∆general

i < 3 ≫ ∆
nested
i < 3 ), and even later, their 

growth remains comparable to specific skills (∆general
i > 3 ≈ ∆

nested
i > 3 ). We 

provide skill growth along randomized sequences (grey triangles), 
∆

random
i ≈ 0, to confirm that the observed job sequences explain their 

corresponding skill growth curves (Supplementary Section 4.1).
All three empirical observations consistently depict career paths 

where both general and nested skills (cs > 0) grow, while unnested ones 
(cs < 0) remain relatively underdeveloped or even decline. Moreover, 
the results prompt interesting recurring patterns. First, skill advance-
ment extends well beyond formal education, suggesting that nested 
specialization pathways persist throughout a career, beyond the 
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skill levels are controlled for. Full statistics are reported in Supplementary  
Tables 6 and 7.

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 9 | April 2025 | 673–687 680

Article https://doi.org/10.1038/s41562-024-02093-2

schooling phase (Supplementary Figs. 29 and 30). This observation 
challenges the traditional view that education is the primary driver of 
human capital development11,40,62–64.

Second, the findings question the simple linear progression 
model, which assumes that basic general skills precede advanced 
specialized ones, as is often portrayed in economics, sociology and 
psychology and even in our study’s initial assumptions28,65. Instead, 
we observe that general skills continue to develop alongside specific 
ones, even after workers enter specialized roles. For example, critical 
thinking is a prerequisite for transitioning into roles requiring new 
skills such as negotiation, as indicated by the asymmetric conditional 
probabilities in Fig. 2. However, even within a negotiation role, further 
advancement depends on honing higher levels of critical thinking. 
Thus, career trajectories unfold through nested specializations, where 
the ongoing development of general skills supports their dependent, 
nested counterparts, thereby echoing the cumulative and sequential 
nature of skill development.

Next, we explore the connection between each specialization 
pathway and wage premiums. Figure 5a,b shows that both educational 
requirements and average annual wages rise with proficiency in nested 
specific skills. However, as shown in Fig. 5c, these observed wage premi-
ums associated with nested skills almost fully disappear when controlling 
for an occupation’s general skill requirements. This finding underscores 
the previous argument that specific skills complement general ones 
rather than stand alone, while general skills remain largely independent. 
Therefore, even in specialized roles, a strong foundation in general skills 
remains essential. That said, the wage penalties associated with unnested 
skills (cs < 0) in Fig. 5 turn into wage premiums of a magnitude compara-
ble to those of nested skills once general skill requirements are factored 
in. These findings suggest that, although unnested skills do hold value 

in the labour market, their potential wage premiums are diminished 
by a lack of dependency structure, almost like a penalty for missing 
that foundation. This finding provides structural insights into career 
development pathways and the broader evolution of workforce skills.

We present a series of tests to demonstrate that our findings 
remain robust even when controlling for education, training and work-
place experience, as well as holding across subsamples of major occu-
pational groups (Supplementary Section 5, Supplementary Table 5 and 
Supplementary Figs. 32–34 and 39). We also confirm our findings hold 
even when excluding managerial roles and social skills (Supplementary 
Sections 9.1 and 9.2 and Supplementary Figs. 62 and 64).

Disparity, skill entrapment and long-run wage penalties across 
demographic groups
We now examine how our skill taxonomy helps in understanding salient 
features of the labour market. Specifically, we analyse skill categories 
across demographic groups to determine whether the nested architec-
ture in human capital explains socio-demographic inequalities, skill 
entrapment and persistent wage penalties. Figure 6a–e compares skill, 
education and wage differences between racial/ethnic groups and their 
white peers. The results show, first of all, notable wage gaps between 
Black and Hispanic workers on the one hand, and Asian workers and 
the baseline of white workers, on the other hand. These wage gaps 
are accompanied by employment in jobs with lower requirements for 
nested skills for Black and Hispanic workers. Notably, for Hispanic work-
ers in particular, another critical factor emerges: an elevated require-
ment for unnested skills, which may contribute to skill entrapment.

To understand this finding in more detail, we examine a case study 
of how language-skill requirements may limit access to jobs requiring 
certain nested skills (Supplementary Section 3.5). We first distinguish 
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Fig. 6 | Skill disparity in demographic distribution of race/ethnicity and 
gender. a–e, The relative average general (a), nested (b) and un-nested (c) skill 
level, education level (d) and weekly wages (e) for Asian (n = 86,055), Black 
(n = 180,304) and Hispanic/Latinx (n = 291,493) workers compared with white 
(n = 1,375,617) workers (expressed as ratios). f–j, The relative average general (f), 
nested (g) and un-nested (h) skill level, education level (i) and weekly wages (j) for 

female workers (nFem
Asian = 34,586, nFem

Black = 89,230, nFem
Hisp. = 105,371 and 

nFem
White = 518,688) compared with male workers. The 95% CI around each ratio is 

calculated by bootstrapping subsamples (Methods). These differentials are 
robust to measurement (Supplementary Fig. 49) and to time-variant economic 
factors (Supplementary Fig. 54) and follow age trends similar to those seen in  
Fig. 4. Supplementary Figs. 51 and 52 show that the gaps have narrowed over time.
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between nested skills that depend on language skills (general) and 
those that do not, and find substantial gaps in language-dependent 
nested skills among Hispanic workers, particularly those who recently 
arrived in the USA. This disparity often leads to the development of 
unnested skills, creating skill traps associated with long-term wage 
penalties (Supplementary Fig. 31)23. Taken together, these findings 
suggest that closing wage gaps for Black workers and Hispanic workers 
may require tailored solutions.

Next, Fig. 6f–j shows skill gaps between men and women across 
social groups. The most pronounced disparities occur for specific 
skills: Except in the Asian subsample, women generally work in occupa-
tions requiring more education and higher levels of general skills than 
men do. However, women’s jobs do not require similar levels of nested 
skills. These disparities probably contribute to the well-known gender 
wage gap observed in the right-most panel. This gap has narrowed over 
time, as shown in Supplementary Fig. 52, but the disconnect between 
education and general skills on the one hand and wages and nested 
skills on the other remains puzzling.

To understand this in more detail, we examine another case study 
on parenthood and women’s tendency to work in jobs with more regular 
and predictable schedules that impact both wages and skill develop-
ment in Supplementary Sections 7.1 and 7.2 (refs. 66–68). Our analysis 
shows that having children is associated with reduced general and 
nested skills for women. By contrast, men with children tend to have 
higher levels of these skills compared with men without children. A 
key factor appears to be work schedules: when we control for irregu-
lar hours and overtime, the gender gap in nested skill requirements 
decreases by more than a third.

Finally, we examine the geographic distribution of skills across 
categories. Our analysis shows that general skills tend to concen-
trate in densely populated urban areas (Supplementary Section 6), 
a finding consistent with previous research on the diversity and com-
plexity of economic activity in large urban economies4,36,69–73. Moreo-
ver, differences in general skills account for about one-third of the 
well-documented urban wage premium74, which is associated with 
employment in large cities.

Increasing nested structure in human capital
Figure 7 shows the historical changes in the hierarchical skill struc-
ture between 2005 and 2019. Over this period, the skill structure has 
become increasingly nested, as indicated by a decrease in the check-
erboard score (from 438.67 to 356.4) and temperature (from 40.07 to 
31.89), alongside increases in NODF (from 39.06 to 41.72) and Nc (from 
573,873 to 651,030)55,56. This trend towards a more nested structure is 
attributed to increasingly uneven job requirements, with growth in 
high-dependency branches and a decline in low-dependency branches. 
Workers with broad skill sets have seen higher wage premiums, prob-
ably driven by demands for nested specialization skills (general and 
nested specific skills with cs > 0), while demand for unnested skills has 
declined (Supplementary Fig. 40). These trends are perhaps attributed 
to the growing complexity and interdependence of the economy (Sup-
plementary Fig. 57)7,75.

The growing divide between nested and unnested speciali-
zations raises concerns, echoing ongoing discussions on job 
polarization20,22,76–78 (Fig. 7c). Given the important role of nested skills 
in career progression and wage expectations, the growing divide poten-
tially further reinforces demographic and regional disparities. Workers 
with insufficient foundational general skills often find themselves stuck 
in unnested specialization paths with limited opportunities for upward 
mobility (Supplementary Figs. 20 and 31)21–23,77. Thus, policymakers and 
educators must prioritize fundamental skill development across all 
demographic groups and regions to mitigate these structural dispari-
ties. In other words, investing in education and training programmes 
that cultivate general skills and unlock specialized pathways is essential 
to addressing this growing divide and improving economic mobility.

Discussion
We present a structural framework for the nested hierarchy in human 
capital manifested in job requirments. Our findings show that skills 
aligned with the nested hierarchy tend to yield greater economic 
rewards, while those outside this structure often miss out on the grow-
ing benefits that come with career progression. This structural clas-
sification of skills explains traditional dichotomies without directly 
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to 31.89), alongside higher NODF (from 39.06 to 41.72) and Nc (from 573,873 to 
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relying on socio-economic contexts. Notably, skills with positive align-
ment scores (cs > 0)—such as cognitive abilities common in white-collar 
roles—are rewarded more substantially and better aligned with edu-
cational systems. Indeed, the structural properties of skills unveil 
socio-economic contexts.

As society continues to evolve, mastering a universal set of skills is 
no longer feasible for individuals across all fields1,2. Our analysis shows 
that the skill structure is becoming more nested with the modern econ-
omy’s growing demand for specific sets of skills, knowledge and abili-
ties that require extensive educational and work trajectories17,40,62,79–81. 
In response, the process of selecting and acquiring the right set of 
skills has become increasingly crucial, but the most valuable skills are 
often embedded within specific domains and require not only cumu-
lative learning but also prerequisites to unlock. This hierarchical skill 
structure is evident in both education and career trajectories, shaping 
broader social and economic systems.

As such, our findings contribute to the field of economic complex-
ity by illustrating how connections within skill networks are conditional 
and how structures become increasingly nested as complexity and spe-
cialization grow. The directional dependencies we identify challenge 
the symmetric relation in traditional co-occurrence networks36,82–85. 
This added depth sheds light on structural changes in economic 
complexity, showing how knowledge, capabilities and technologies 
are accumulated within populations and how precedence relations 
between activities shape economic outputs at the firm, city, regional 
or national level25,70,71,83,86–92.

In this way, we bridge economic theories of career progression 
and wage premiums through hierarchical structures40,62 and economic 
complexity models that describe development through interdepend-
encies between skills and capabilities25. The hierarchical organization 
of skills, long assumed to shape developmental trajectories16,36,69, is 
revealed in our analysis to be directional rather than mutual through 
a dependency structure. These structured pathways systematically 
shape professional development and the socio-economic landscape, 
driving differences in rewards and career accessibility based on early 
choice of skill acquisition36,63,76,93–95. As complexity and specialization 
increase, we observe the skill dependency structure becoming more 
nested. This deeper nested structure imposes greater constraints 
on individual career paths, amplifies disparities and has macroeco-
nomic implications, affecting the resilience and stability of the entire 
system24,54,96–98.

We acknowledge the limitations of this approach. Hierarchical 
dependencies within human capital can be analysed using different 
methodologies and data sources. Our framework offers just one per-
spective. Furthermore, our analysis is centred on the US labour market, 
which has its own unique characteristics in its own education systems, 
industry composition and urban structure. Generalizing these findings 
to other settings, such as entrepreneurship99 or economies at differ-
ent stages of development100, remains an open question for future 
research.

Methods
O*NET
Occ u pa t i o n a l  I n f o r m a t i o n  N e t wo r k  (O * N E T )  p rov i d e s 
occupation-specific descriptors on almost 1,000 occupations across 
the US economy29. This publicly accessible database is regularly 
updated with input from workers across various occupations. For our 
analysis, we use the 2019 version to avoid distortions from the coro-
navirus disease 2019 pandemic and compare it with the 2005 version 
for historical changes, as it is the earliest dataset that offers consistent 
skill and education categories across many occupations. We define 
skills broadly, covering skills, knowledge and abilities (collectively 
referred to as skills), covering a total of 120 items. Each occupation 
lists the importance and required proficiency level, as well as educa-
tional requirements for each skill. Importance is rated from 1 to 5 as 

not important to extremely important, while proficiency level ranges 
from 0 to 7, low to high. This numerical rating creates an occupation–
skill matrix, with each entry representing the skill’s importance or 
required level. Our main analysis focuses on skill levels to construct 
demand profiles for skill generality and skill growth along individual 
career trajectories. However, because skill importance and level are 
highly correlated (0.94), our findings remain consistent regardless of 
the measure used50.

OEWS
Occupational Employment and Wage Statistics (OEWS) provides wage 
and employment data at both national and regional levels for each 
occupation. For consistency with the O*NET dataset, we use the 2005 
and 2019 versions, although we find that including and aggregating 
data from several years before and after these dates does not alter our 
results. While both O*NET and OEWS conveniently use the Standard 
Occupational Classification (SOC) system, OEWS data are available at 
a more aggregated level (774 unique titles with 6-digit SOC), whereas 
O*NET provides more detailed data (968 unique occupations with 
8-digit SOC), requiring us to aggregate them for alignment.

CPS
CPS is a monthly survey conducted by the Census Bureau for the BLS101. 
For our analysis, we use the median age of workers in occupations for 
2019, along with detailed demographic data from 1980 to 2022, includ-
ing respondents’ occupation titles, wages, hours worked, gender and 
race/ethnicity. As with other datasets, matching occupational units 
requires the use of a crosswalk, detailed in the corresponding section.

Resume dataset
The resume dataset contains 20 million anonymized resumes span-
ning from 2007 to 2020, detailing 70 million job sequences classified 
using the 8-digit SOC system. Unlike the CPS dataset, this dataset lacks 
demographic information such as age, gender and race, as all identify-
ing information has been removed.

Skill generality groups
O*NET provides the required proficiency levels for each skill across vari-
ous occupations. To measure a skill’s generality—how broadly it applies 
across occupations—we define the skill demand profile as the distribu-
tion of occupations requiring that skill at different proficiency levels. 
We then group skills by the shape of their demand profiles (Fig. 1a–c) 
using a k-means clustering algorithm. Based on our statistical tests, 
the optimal number of groups is three (k = 3), which we use in our main 
analysis, focusing on the effects of general and specific skills, while 
downplaying intermediate skills. However, our findings remain robust 
even when using k = 2 or k = 4 (Supplementary Section 1).

Local reaching centrality
Local reaching centrality provides an alternative measure of skill gen-
erality once the skill dependency network is defined. It quantifies how 
many skills depend on a focal skill by calculating the number of skills 
reachable from it through outgoing edges (that is, in the direction of 
dependency)51. A higher reaching centrality in the hierarchical struc-
ture indicates a skill with more dependencies (thus, a more general 
skill), offering an additional metric for assessing skill generality.

Skill dependency using asymmetric conditional probability
To calculate the conditional probability of one skill being included in 
job requirements given the presence of another skill, we first convert 
the continuous [0, 7] skill levels (Levelo,s) into binary variables indi-
cating the presence/absence of each skill for each occupation (mo,s), 
using the widely used disparity filter102. This algorithm identifies the 
statistically significant disparities of a skill’s presence in an occupa-
tion, comparing it against random expectation. We set the algorithm’s 
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parameters to satisfy two conditions: first, the ranking of skills by 
strength in the binary representation should be preserved (that is, 
skills’ ranking by ∑oLevelo,s aligning closely with those by ∑omo,s). Sec-
ond, the ranking of occupations by skill levels should be maintained 
in a binary representation (the ranking by ∑sLevelo,s matches those 
by ∑smo,s). Basically, these conditions ensure that high-skilled jobs 
remain high-skilled, and widely used skills retain their ranking in both 
representations (Supplementary Section 3.1).

Once the presence/absence is set, we next calculate conditional 
probabilities for every skill pair to infer their dependence directions, 
following ref. 33. Two key thresholds are used to filter out random 
noise: zth, which sets the threshold for significant co-occurrences to be 
considered meaningful, and αth, which sets the threshold for asymme-
try to determine a meaningful directional dependency. After filtering 
out non-significant co-occurrences using zth, we compute the condi-
tional probabilities P(u∣v) and P(v∣u). A directional dependency v → u is 
assigned only when P(u∣v) is substantially greater than P(v∣u), based on 
the threshold αth. Note that αth is differentially weighted for each pair of 
skills so that it accounts for heterogeneous skill’s node degrees, and we 
test various levels of α (see equation (6) in Supplementary Section 3).  
The dependency strength/weight is then calculated as a function of the 
difference between these conditional probabilities, adjusted for the 
null model that accounts for the expected number of shared occupa-
tions between skills u and v, given their respective degrees (see equa-
tion (7) in Supplementary Section 3).

Reachability with arrival probability
Reachability with arrival probability quantifies the chances of getting 
to the focal skill given the prerequisite connections based on arrival 
probability, a version of hitting probability, from node i to j by random 
walks58. For different source and target skills i ≠ j, this is numerically 
equivalent to first deriving the probability of random walks of length l 
by raising the weighted-directed adjacency matrix (skill dependency 
network in Fig. 2), M, to power l, and then calculating Ri,j = ∑lM

l
i,j .  

We obtain the final arrival probability by summing over a sufficient 
number of path lengths until reaching the saturation points. To compute 
arrival probabilities for focal skills (such as programming, negotiation 
and repairing) in Fig. 2c–e, we apply the R package markovchain103.

Nested skills
Nestedness (N) is a structural characteristic originally developed for 
ecological systems to assess how species interactions are organized, 
particularly in a way where the interactions of specialists (species 
with fewer interactions) are subsets of those of generalists (species 
with more interactions)53,98,104,105. For example, in a plant–pollinator 
interaction, if a specialist pollinator visits only a few plant species, 
those plants are also visited by more generalist pollinators, creating 
a hierarchically nested structure. This hierarchical arrangement is 
often visualized as an upper-triangular or pyramid-like shape in an 
interaction matrix, where rows and columns are ordered by the total 
interactions. However, there is no consensus on how to precisely meas-
ure deviations from this ideal upper-triangular structure, so different 
metrics are used, including the overlap index (Nc), checkerboard score, 
temperature and NODF. We test them to ensure the robustness of our 
findings (Supplementary Section 2).

Nestedness has been applied beyond ecology to explore 
socio-economic structures, such as occupations and technological 
capabilities across nations, regions, urban areas and companies52,54,90,106. 
In our study, nestedness N quantifies the extent to which the presence 
of narrowly applicable skills (specialists) in job requirements is con-
sistently contained within the broader application ranges of skills 
(generalist).

The skill–occupation matrix (ms,o) in Supplementary Fig. 6 shows 
an imperfect upper-left triangle when occupations and skills are sorted 
by their marginal totals. We assess whether skill s could be present in 

different job requirements to improve the overall nested structure, 
following52. We calculate the observed nestedness (N) and the coun-
terfactual nestedness (N*) by randomizing the presence of skill s across 
job requirements. The deviation between these values, normalized by 
the standard deviation of this counterfactual N*, indicates the contribu-
tion of skill s to the overall nestedness: cs = (N − ⟨N∗

s ⟩)/σN∗
s
. Here, N is a 

nestedness score of the empirically observed interactions while ⟨N∗
s ⟩ 

and σN∗
s
 are the means and standard deviation derived from the null 

model to create counterfactuals. For each focal skill s, we run 5,000 
iterations to measure its mean and standard deviation107. Again, we use 
the overlap index, checkerboard score, temperature and NODF to 
quantify nestedness N (refs. 55–57,108). We then categorize specific 
skills with cs > 0 as ‘nested’ and those with cs < 0 as ‘un-nested’. Sup-
plementary Table 2 provides the list of skills in these categories, and 
further details and robustness checks are in Supplementary Section 2.

The imperfect nested structure with negative cs may be attributed 
to human capital constraints within occupations, similar to the concept 
of limited carrying capacity in systems ecology. Unlike skills, which 
show a broad range of distribution profiles (Fig. 1), Supplementary Fig. 5 
shows that the scope of occupations remains mostly constant, suggest-
ing that the total amount of skill levels embodied in occupations does 
not differ much as if constrained. Supplementary Section 2 shows that 
these constraints persist regardless of how well the occupations are 
paid and how advanced an education they require. It seems that the lim-
ited cognitive and physiological capacity of individual workers imposes 
a natural boundary on how much one person can learn and perform in 
a single job2,109. These constraints drive specialization in complex jobs, 
resulting in modular structures within skill–occupation interactions 
where certain skills become mutually exclusive within an occupation 
in addition to the nestedness, creating nested-modular110,111, explaining 
the uneven nestedness observed in our skill hierarchy in Fig. 2.

Expected education level for skills and occupations
The education variable in O*NET is categorized into 12 discrete grades 
(edue), ranging from below high school (1) to post-doctorate (12). Each 
occupation (o) consists of the percentage of employees who require 
each grade of education (fo,e). We calculated the expected education 
grade for each occupation as an average education grade weighted by 
each employee’s fraction, 〈edu〉o = ∑efe,o × edue. For instance, 6.05% of 
Chief Executives require a minimum of some college courses (4), 4.23%, 
an associate’s degree (5) and 21.61%, a bachelor’s degree (6), among 
other levels. Then, the expected education grade 〈edu〉o = …0.0605 × 
4 + 0.0423 × 5 + 0.2161 × 6 + …. We then use 〈edu〉o to estimate the 
educational requirement of a skill s, expressed as ⟨edu⟩s =

∑o ⟨edu⟩o× Levelo,s
∑oLevelo,s

, 

where Level denotes the level of the skill s required by occupation o.

Synthetic birth cohorts
The median ages of workers in each occupation are derived from the 
2019 CPS, and synthetic birth cohorts are constructed using indi-
vidual survey data jointly conducted by the US Census Bureau and the 
BLS101. The different occupational taxonomies in the two datasets are 
mapped by the BLS crosswalk. Although the CPS provides monthly 
surveys for each household, these surveys are not long enough to 
cover long-term trends. Therefore, we create synthetic birth cohorts by 
stitching together snapshots of individuals born in the same year across 
different survey rounds. This method, widely used in the literature, 
allows us to gain insights into the evolution of various social, economic 
and demographic characteristics over time when longitudinal data are 
unavailable10,11,112,113.

For example, to construct a synthetic cohort for those born in 1970, 
we identify individuals whose birth year was 1970 in CPS surveys con-
ducted in 1995, 1996, 1997 and so on, up to 2015. We then compile this 
data as if we were following the same group of individuals throughout 
their lives, as shown in the inset of Fig. 4. This approach is referred to as 

http://www.nature.com/nathumbehav
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a synthetic birth cohort because it is not a real cohort in the traditional 
sense; rather, it is constructed by aggregating data from different 
individuals born in the same year. The individuals surveyed in each CPS 
round vary, even though they all share the same birth year. By track-
ing individuals born in the same year across multiple survey rounds, 
nevertheless, we can observe changes in behaviours or characteristics 
of interest as people age, albeit with different individuals representing 
the cohort at each point in time.

Demographic analysis
CPS microdata provide information on gender and race/ethnicity 
demographics. We chose four race/ethnicity categories—white, Black, 
Asian and Hispanic—as they make up the bulk of the sample in Fig. 6. To 
identify individuals of Hispanic background, we overrode the informa-
tion of the race (RACE) variable with the Hispanic (HISPAN) variable 
in the CPS. Wages are adjusted for inflation, and the number of hours 
worked is accounted for to calculate an adjusted weekly wage, allow-
ing comparability across the population. We include only full-time 
workers aged 18–55 who were employed at the time of the survey and 
earn at least US$10,000 annually to minimize the impact of attrition 
and early retirement. For each demographic category, the average 
skill level is calculated for its occupational composition OCC, that is, 
Levelocc,s = 〈Levelo,s〉 o∈OCC.

The race/ethnic disparities in Fig. 6 are shown as ratios of each 
demographic measure (average skill levels, education level and weekly 
wages) relative to those of white workers. Likewise, the gender gap 
within each race/ethnicity is measured as the ratio of these quantities 
compared with male workers within that group. Due to the absence of 
a matched sample, 95% confidence intervals (CIs) are derived using 
random subsampling. In each iteration, we take 10% of the subpopula-
tion of interest (for example, Asian male and Asian female workers) and 
estimate all corresponding measures. This sampling and estimation 
process is repeated 10,000 times, generating a distribution for each 
measure from which the 95% CIs are derived. The skill, education and 
wage estimations of Fig. 6 are averaged over the years (1980–2022). 
Supplementary Figs. 51 and 52 capture temporal patterns of these 
factors, exhibiting the gaps have narrowed over time. In addition, 
Supplementary Figs. 53 and 54 show that the skill differentials between 
male and female workers, which begin around the age of 30 (Fig. 4), are 
evident across all racial and ethnic groups.

Skill level changes in career trajectories
The resume dataset comprises 20 million individual resumes collected 
between 2007 and 2020, with over 70 million job transition sequences 
(classified as 8-digit SOC). For our primary analysis, we exclude job 
transitions shorter than 1 year or those occurring within the same 
occupation (for example, moving between companies without a change 
in job role). This exclusion is due to anomalies observed in such cases, 
where individuals in roles like janitor or model appeared to transition 
directly to CEO positions, sometimes with overlapping timelines. We 
confirm that our findings remain robust despite this exclusion (see 
Supplementary Section 4 for further details).

We then calculate the average skill levels of those occupations 
appearing in ith sequences in each resume, and their increase/decrease 
compared with the next job requirements (Δi). To verify whether the 
observed trends are genuinely related to career trajectories, we ran-
domize the ith sequences in resumes and compare these randomized 
patterns with the empirically observed skill changes. This confirms that 
the trends observed are indeed specific to actual career trajectories.

Temporal evolution of skill structure
We analyse temporal changes in the skill structure from O*NET)29. 
We choose two sufficiently temporally distant snapshots of the data 
to capture the structural differences: version 9.0 in 2005, as it is the 
first version comparable to the most recent version while providing 

satisfactory coverage of occupational information (such as education 
and wage), and version 24.1 in 2019, as it is the most recent version 
without the potential irregular patterns introduced by the pandemic. 
A key empirical challenge is that the classification system is continu-
ously updated to reflect technological advancements, economic shifts 
and social changes36,38,39.

We created a crosswalk between occupation classifications in 
2005 and 2019 that is not immediately available other than between 
two consecutive years. Occupation codes in 2005 are matched to those 
in 2006, and then those in 2006 to 2009, and so on to 2019. Our cross-
walk automatically matches 968 occupations in 2019 skill data and 
941 unique occupations in the 2005 skill data, and the rest are manu-
ally matched36. Using these occupations and their skill levels in 2005, 
we construct the skill structure for 2005 in Fig. 7c, using comparable 
parameters and layouts for both years to make the networks as com-
parable as possible (Supplementary Section 8).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
This study has used three publicly available data sources: O*NET 
(https://www.onetonline.org), CPS (https://www.bls.gov/cps) and 
occupational information, including wages, employment and age 
demographic prepared by the US BLS (https://www.bls.gov/oes). 
Anonymized resumes in Fig. 4g–i are based on proprietary data that can 
be purchased from Burning Glass Technologies (https://lightcast.io).

Code availability
All algorithms previously developed and used in processing and prepar-
ing data and analysis have been cited. The code used for data processing 
and analysis is available via GitHub at https://github.com/mohhoss/
Nested-Skills-in-Labor-Ecosystems.
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